Sui Generis: Large Language Models for Authorship Attribution and Verification in Latin (2410.09245v1)
Abstract: This paper evaluates the performance of LLMs in authorship attribution and authorship verification tasks for Latin texts of the Patristic Era. The study showcases that LLMs can be robust in zero-shot authorship verification even on short texts without sophisticated feature engineering. Yet, the models can also be easily "mislead" by semantics. The experiments also demonstrate that steering the model's authorship analysis and decision-making is challenging, unlike what is reported in the studies dealing with high-resource modern languages. Although LLMs prove to be able to beat, under certain circumstances, the traditional baselines, obtaining a nuanced and truly explainable decision requires at best a lot of experimentation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.