Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Recovering complex ecological dynamics from time series using state-space universal dynamic equations (2410.09233v1)

Published 11 Oct 2024 in q-bio.PE

Abstract: Ecological systems often exhibit complex nonlinear dynamics like oscillations, chaos, and regime shifts. Universal dynamic equations have shown promise in modeling complex dynamics by combining known functional forms with neural networks that represent unknown relationships. However, these methods do not yet accommodate the forms of uncertainty common to ecological datasets. To address this limitation, we developed state-space universal dynamic equations by combining universal differential equations with a state-space modeling framework, accounting for uncertainty. We tested this framework on two simulated and two empirical case studies and found that this method can recover nonlinear biological interactions that produce complex behaviors, including chaos and regime shifts. Their forecasting performance is context-dependent, with the best performance being achieved on chaotic and oscillating time series. This new approach leveraging both ecological theory and data-driven machine learning offers a promising new way to make accurate and useful predictions of ecosystem change.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube