Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On-Chip Learning via Transformer In-Context Learning (2410.08711v1)

Published 11 Oct 2024 in cs.NE

Abstract: Autoregressive decoder-only transformers have become key components for scalable sequence processing and generation models. However, the transformer's self-attention mechanism requires transferring prior token projections from the main memory at each time step (token), thus severely limiting their performance on conventional processors. Self-attention can be viewed as a dynamic feed-forward layer, whose matrix is input sequence-dependent similarly to the result of local synaptic plasticity. Using this insight, we present a neuromorphic decoder-only transformer model that utilizes an on-chip plasticity processor to compute self-attention. Interestingly, the training of transformers enables them to ``learn'' the input context during inference. We demonstrate this in-context learning ability of transformers on the Loihi 2 processor by solving a few-shot classification problem. With this we emphasize the importance of pretrained models especially their ability to find simple, local, backpropagation free, learning rules enabling on-chip learning and adaptation in a hardware friendly manner.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.