Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deformation Recovery: Localized Learning for Detail-Preserving Deformations (2410.08225v1)

Published 26 Sep 2024 in cs.GR

Abstract: We introduce a novel data-driven approach aimed at designing high-quality shape deformations based on a coarse localized input signal. Unlike previous data-driven methods that require a global shape encoding, we observe that detail-preserving deformations can be estimated reliably without any global context in certain scenarios. Building on this intuition, we leverage Jacobians defined in a one-ring neighborhood as a coarse representation of the deformation. Using this as the input to our neural network, we apply a series of MLPs combined with feature smoothing to learn the Jacobian corresponding to the detail-preserving deformation, from which the embedding is recovered by the standard Poisson solve. Crucially, by removing the dependence on a global encoding, every \textit{point} becomes a training example, making the supervision particularly lightweight. Moreover, when trained on a class of shapes, our approach demonstrates remarkable generalization across different object categories. Equipped with this novel network, we explore three main tasks: refining an approximate shape correspondence, unsupervised deformation and mapping, and shape editing. Our code is made available at https://github.com/sentient07/LJN

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.