Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Boosting Hierarchical Reinforcement Learning with Meta-Learning for Complex Task Adaptation (2410.07921v2)

Published 10 Oct 2024 in cs.LG and cs.AI

Abstract: Hierarchical Reinforcement Learning (HRL) is well-suitedd for solving complex tasks by breaking them down into structured policies. However, HRL agents often struggle with efficient exploration and quick adaptation. To overcome these limitations, we propose integrating meta-learning into HRL to enable agents to learn and adapt hierarchical policies more effectively. Our method leverages meta-learning to facilitate rapid task adaptation using prior experience, while intrinsic motivation mechanisms drive efficient exploration by rewarding the discovery of novel states. Specifically, our agent employs a high-level policy to choose among multiple low-level policies within custom-designed grid environments. By incorporating gradient-based meta-learning with differentiable inner-loop updates, we optimize performance across a curriculum of progressively challenging tasks. Experimental results highlight that our metalearning-enhanced hierarchical agent significantly outperforms standard HRL approaches lacking meta-learning and intrinsic motivation. The agent demonstrates faster learning, greater cumulative rewards, and higher success rates in complex grid-based scenarios. These Findings underscore the effectiveness of combining meta-learning, curriculum learning, and intrinsic motivation to enhance the capability of HRL agents in tackling complex tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube