Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tally: Non-Intrusive Performance Isolation for Concurrent Deep Learning Workloads (2410.07381v3)

Published 9 Oct 2024 in cs.DC

Abstract: GPU underutilization is a significant concern in many production deep learning clusters, leading to prolonged job queues and increased operational expenses. A promising solution to this inefficiency is GPU sharing, which improves resource utilization by allowing multiple workloads to execute concurrently on a single GPU. However, deploying GPU sharing in production settings faces critical obstacles due to the limitations of existing mechanisms, including high integration costs, inadequate performance isolation, and limited application compatibility. To address these issues, we introduce \emph{Tally}, a non-intrusive GPU sharing mechanism that provides robust performance isolation and comprehensive workload compatibility. The key to Tally's robust performance isolation capability lies in its fine-grained thread-block-level GPU kernel scheduling strategy, which allows the system to effectively mitigate interference caused by workload co-execution. We evaluate Tally on a diverse range of workloads and show that it incurs an average overhead of only $7.2\%$ on the $99{th}$-percentile latency of high-priority inference tasks when executed concurrently with best-effort training workloads, compared to $188.9\%$ overhead exhibited by the state-of-the-art GPU sharing systems like TGS, while achieving over $80\%$ of TGS's system throughput.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: