Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

PipeFill: Using GPUs During Bubbles in Pipeline-parallel LLM Training (2410.07192v1)

Published 23 Sep 2024 in cs.DC and cs.LG

Abstract: Training Deep Neural Networks (DNNs) with billions of parameters generally involves pipeline-parallel (PP) execution. Unfortunately, PP model training can use GPUs inefficiently, especially at large scale, due to idle GPU time caused by pipeline bubbles, which are often 15-30% and can exceed 60% of the training job's GPU allocation. To improve the GPU utilization of PP model training, this paper describes PipeFill, which fills pipeline bubbles with execution of other pending jobs. By leveraging bubble GPU time, PipeFill reduces the GPU utilization sacrifice associated with scaling-up of large-model training. To context-switch between fill jobs and the main training job with minimal overhead to the main job, and maximize fill job efficiency, PipeFill carefully fits fill job work to measured bubble durations and GPU memory availability, introduces explicit pipeline-bubble instructions, and orchestrates placement and execution of fill jobs in pipeline bubbles. Experiments show that PipeFill can increase overall utilization by up to 63% for GPUs used in large-scale LLM training, with <2% slowdown of the training job, and 5-15% even for low-scale LLM training. For large-scale LLM training on 8K GPUs, the 63% increase translates to up to 2.6K additional GPUs worth of work completed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.