Safe Reinforcement Learning Filter for Multicopter Collision-Free Tracking under disturbances
Abstract: This paper proposes a safe reinforcement learning filter (SRLF) to realize multicopter collision-free trajectory tracking with input disturbance. A novel robust control barrier function (RCBF) with its analysis techniques is introduced to avoid collisions with unknown disturbances during tracking. To ensure the system state remains within the safe set, the RCBF gain is designed in control action. A safety filter is introduced to transform unsafe reinforcement learning (RL) control inputs into safe ones, allowing RL training to proceed without explicitly considering safety constraints. The SRLF obtains rigorous guaranteed safe control action by solving a quadratic programming (QP) problem that incorporates forward invariance of RCBF and input saturation constraints. Both simulation and real-world experiments on multicopters demonstrate the effectiveness and excellent performance of SRLF in achieving collision-free tracking under input disturbances and saturation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.