Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Filtered Randomized Smoothing: A New Defense for Robust Modulation Classification (2410.06339v1)

Published 8 Oct 2024 in cs.LG, cs.CR, cs.IT, cs.NI, eess.SP, and math.IT

Abstract: Deep Neural Network (DNN) based classifiers have recently been used for the modulation classification of RF signals. These classifiers have shown impressive performance gains relative to conventional methods, however, they are vulnerable to imperceptible (low-power) adversarial attacks. Some of the prominent defense approaches include adversarial training (AT) and randomized smoothing (RS). While AT increases robustness in general, it fails to provide resilience against previously unseen adaptive attacks. Other approaches, such as Randomized Smoothing (RS), which injects noise into the input, address this shortcoming by providing provable certified guarantees against arbitrary attacks, however, they tend to sacrifice accuracy. In this paper, we study the problem of designing robust DNN-based modulation classifiers that can provide provable defense against arbitrary attacks without significantly sacrificing accuracy. To this end, we first analyze the spectral content of commonly studied attacks on modulation classifiers for the benchmark RadioML dataset. We observe that spectral signatures of un-perturbed RF signals are highly localized, whereas attack signals tend to be spread out in frequency. To exploit this spectral heterogeneity, we propose Filtered Randomized Smoothing (FRS), a novel defense which combines spectral filtering together with randomized smoothing. FRS can be viewed as a strengthening of RS by leveraging the specificity (spectral Heterogeneity) inherent to the modulation classification problem. In addition to providing an approach to compute the certified accuracy of FRS, we also provide a comprehensive set of simulations on the RadioML dataset to show the effectiveness of FRS and show that it significantly outperforms existing defenses including AT and RS in terms of accuracy on both attacked and benign signals.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube