Dynamic graphical models: Theory, structure and counterfactual forecasting (2410.06125v1)
Abstract: Simultaneous graphical dynamic linear models (SGDLMs) provide advances in flexibility, parsimony and scalability of multivariate time series analysis, with proven utility in forecasting. Core theoretical aspects of such models are developed, including new results linking dynamic graphical and latent factor models. Methodological developments extend existing Bayesian sequential analyses for model marginal likelihood evaluation and counterfactual forecasting. The latter, involving new Bayesian computational developments for missing data in SGDLMs, is motivated by causal applications. A detailed example illustrating the models and new methodology concerns global macroeconomic time series with complex, time-varying cross-series relationships and primary interests in potential causal effects.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.