Heuristics for Partially Observable Stochastic Contingent Planning (2410.05870v1)
Abstract: Acting to complete tasks in stochastic partially observable domains is an important problem in artificial intelligence, and is often formulated as a goal-based POMDP. Goal-based POMDPs can be solved using the RTDP-BEL algorithm, that operates by running forward trajectories from the initial belief to the goal. These trajectories can be guided by a heuristic, and more accurate heuristics can result in significantly faster convergence. In this paper, we develop a heuristic function that leverages the structured representation of domain models. We compute, in a relaxed space, a plan to achieve the goal, while taking into account the value of information, as well as the stochastic effects. We provide experiments showing that while our heuristic is slower to compute, it requires an order of magnitude less trajectories before convergence. Overall, it thus speeds up RTDP-BEL, particularly in problems where significant information gathering is needed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.