Papers
Topics
Authors
Recent
2000 character limit reached

MelissaDL x Breed: Towards Data-Efficient On-line Supervised Training of Multi-parametric Surrogates with Active Learning (2410.05860v1)

Published 8 Oct 2024 in cs.LG and cs.AI

Abstract: Artificial intelligence is transforming scientific computing with deep neural network surrogates that approximate solutions to partial differential equations (PDEs). Traditional off-line training methods face issues with storage and I/O efficiency, as the training dataset has to be computed with numerical solvers up-front. Our previous work, the Melissa framework, addresses these problems by enabling data to be created "on-the-fly" and streamed directly into the training process. In this paper we introduce a new active learning method to enhance data-efficiency for on-line surrogate training. The surrogate is direct and multi-parametric, i.e., it is trained to predict a given timestep directly with different initial and boundary conditions parameters. Our approach uses Adaptive Multiple Importance Sampling guided by training loss statistics, in order to focus NN training on the difficult areas of the parameter space. Preliminary results for 2D heat PDE demonstrate the potential of this method, called Breed, to improve the generalization capabilities of surrogates while reducing computational overhead.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube