Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On affine Kazhdan-Lusztig R-polynomials for Kac-Moody groups (2410.04872v1)

Published 7 Oct 2024 in math.RT

Abstract: In 2019, D. Muthiah proposed a strategy to define affine Kazhdan-Lusztig $R$-polynomials for Kac-Moody groups. Since then, Bardy-Panse, the first author and Rousseau have introduced the formalism of twin masures and the authors have extended combinatorial results from affine root systems to general Kac-Moody root systems in a previous article. In this paper, we use these results to explicitly define affine $R$-Kazhdan-Lusztig polynomials for Kac-Moody groups. The construction is based on a path model lifting to twin masures. Conjecturally, these polynomials count the cardinality of intersections of opposite affine Schubert cells, as in the case of reductive groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.