Papers
Topics
Authors
Recent
2000 character limit reached

Adjusting for Spatial Correlation in Machine and Deep Learning (2410.04312v1)

Published 5 Oct 2024 in stat.ME

Abstract: Spatial data display correlation between observations collected at neighboring locations. Generally, machine and deep learning methods either do not account for this correlation or do so indirectly through correlated features and thereby forfeit predictive accuracy. To remedy this shortcoming, we propose preprocessing the data using a spatial decorrelation transform derived from properties of a multivariate Gaussian distribution and Vecchia approximations. The transformed data can then be ported into a machine or deep learning tool. After model fitting on the transformed data, the output can be spatially re-correlated via the corresponding inverse transformation. We show that including this spatial adjustment results in higher predictive accuracy on simulated and real spatial datasets.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.