Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Discovering Biases in Information Retrieval Models Using Relevance Thesaurus as Global Explanation (2410.03584v1)

Published 4 Oct 2024 in cs.IR

Abstract: Most efforts in interpreting neural relevance models have focused on local explanations, which explain the relevance of a document to a query but are not useful in predicting the model's behavior on unseen query-document pairs. We propose a novel method to globally explain neural relevance models by constructing a "relevance thesaurus" containing semantically relevant query and document term pairs. This thesaurus is used to augment lexical matching models such as BM25 to approximate the neural model's predictions. Our method involves training a neural relevance model to score the relevance of partial query and document segments, which is then used to identify relevant terms across the vocabulary space. We evaluate the obtained thesaurus explanation based on ranking effectiveness and fidelity to the target neural ranking model. Notably, our thesaurus reveals the existence of brand name bias in ranking models, demonstrating one advantage of our explanation method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.