Papers
Topics
Authors
Recent
2000 character limit reached

Surgical, Cheap, and Flexible: Mitigating False Refusal in Language Models via Single Vector Ablation (2410.03415v2)

Published 4 Oct 2024 in cs.CL

Abstract: Training a LLM to be both helpful and harmless requires careful calibration of refusal behaviours: Models should refuse to follow malicious instructions or give harmful advice (e.g."how do I kill someone?"), but they should not refuse safe requests, even if they superficially resemble unsafe ones (e.g. "how do I kill a Python process?"). Avoiding such false refusal, as prior work has shown, is challenging even for highly-capable LLMs. In this paper, we propose a simple and surgical method for mitigating false refusal in LLMs via single vector ablation. For a given model, we extract a false refusal vector and show that ablating this vector reduces false refusal rate while preserving the model's safety and general capabilities. We also show that our approach can be used for fine-grained calibration of model safety. Our approach is training-free and model-agnostic, making it useful for mitigating the problem of false refusal in current and future LLMs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 9 likes about this paper.