Papers
Topics
Authors
Recent
Search
2000 character limit reached

A large synthetic dataset for machine learning applications in power transmission grids

Published 4 Oct 2024 in eess.SY and cs.SY | (2410.03365v2)

Abstract: With the ongoing energy transition, power grids are evolving fast. They operate more and more often close to their technical limit, under more and more volatile conditions. Fast, essentially real-time computational approaches to evaluate their operational safety, stability and reliability are therefore highly desirable. Machine Learning methods have been advocated to solve this challenge, however they are heavy consumers of training and testing data, while historical operational data for real-world power grids are hard if not impossible to access. This manuscript presents a large synthetic dataset of power injections in an electric transmission grid model of continental Europe, and describes the algorithm developed for its generation. The method allows one to generate arbitrarily large time series from the knowledge of the grid -- the admittance of its lines as well as the location, type and capacity of its power generators -- and aggregated power consumption data, such as the national load data given by ENTSO-E. The obtained datasets are statistically validated against real-world data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.