Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Select Cutting Planes in Mixed Integer Linear Programming Solving (2410.03112v2)

Published 4 Oct 2024 in math.OC

Abstract: Cutting planes (cuts) are crucial for solving Mixed Integer Linear Programming (MILP) problems. Advanced MILP solvers typically rely on manually designed heuristic algorithms for cut selection, which require much expert experience and cannot be generalized for different scales of MILP problems. Therefore, learning-based methods for cut selection are considered a promising direction. State-of-the-art learning-based methods formulate cut selection as a sequence-to-sequence problem, easily handled by sequence models. However, the existing sequence models need help with the following issues: (1) the model only captures cut information while neglecting the Linear Programming (LP) relaxation; (2) the sequence model utilizes positional information of the input sequence, which may influence cut selection. To address these challenges, we design a novel learning model HGTSM for better select cuts. We encode MILP problem state as a heterogeneous tripartite graph, utilizing heterogeneous graph networks to fully capture the underlying structure of MILP problems. Simultaneously, we propose a novel sequence model whose architecture is tailored to handle inputs in different orders. Experimental results demonstrate that our model outperforms heuristic methods and learning-based baselines on multiple challenging MILP datasets. Additionally, the model exhibits stability and the ability to generalize to different types of problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: