Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Homoclinic snaking of contact defects in reaction-diffusion equations (2410.02621v1)

Published 3 Oct 2024 in math.DS and nlin.PS

Abstract: We apply spatial dynamical-systems techniques to prove that certain spatiotemporal patterns in reversible reaction-diffusion equations undergo snaking bifurcations. That is, in a narrow region of parameter space, countably many branches of patterned states coexist that connect at towers of saddle-node bifurcations. Our patterns of interest are contact defects, which are 1-dimensional time-periodic patterns with a spatially oscillating core region that at large distances from the origin in space resemble pure temporally oscillatory states and arise as natural analogues of spiral and target waves in one spatial dimension. We show that these solutions lie on snaking branches that have a more complex structure than has been seen in other contexts. In particular, we predict the existence of families of asymmetric travelling defect solutions with arbitrary background phase offsets, in addition to symmetric standing target and spiral patterns. We prove the presence of these additional patterns by reconciling results in classic ODE studies with results from the spatial-dynamics study of patterns in PDEs and using geometrical information contained in the stable and unstable manifolds of the background wavetrains and their natural equivariance structure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: