Papers
Topics
Authors
Recent
2000 character limit reached

Federated Reinforcement Learning to Optimize Teleoperated Driving Networks (2410.02312v1)

Published 3 Oct 2024 in cs.NI

Abstract: Several sixth generation (6G) use cases have tight requirements in terms of reliability and latency, in particular teleoperated driving (TD). To address those requirements, Predictive Quality of Service (PQoS), possibly combined with reinforcement learning (RL), has emerged as a valid approach to dynamically adapt the configuration of the TD application (e.g., the level of compression of automotive data) to the experienced network conditions. In this work, we explore different classes of RL algorithms for PQoS, namely MAB (stateless), SARSA (stateful on-policy), Q-Learning (stateful off-policy), and DSARSA and DDQN (with Neural Network (NN) approximation). We trained the agents in a federated learning (FL) setup to improve the convergence time and fairness, and to promote privacy and security. The goal is to optimize the trade-off between Quality of Service (QoS), measured in terms of the end-to-end latency, and Quality of Experience (QoE), measured in terms of the quality of the resulting compression operation. We show that Q-Learning uses a small number of learnable parameters, and is the best approach to perform PQoS in the TD scenario in terms of average reward, convergence, and computational cost.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.