Density based Spatial Clustering of Lines via Probabilistic Generation of Neighbourhood (2410.02290v1)
Abstract: Density based spatial clustering of points in $\mathbb{R}n$ has a myriad of applications in a variety of industries. We generalise this problem to the density based clustering of lines in high-dimensional spaces, keeping in mind there exists no valid distance measure that follows the triangle inequality for lines. In this paper, we design a clustering algorithm that generates a customised neighbourhood for a line of a fixed volume (given as a parameter), based on an optional parameter as a continuous probability density function. This algorithm is not sensitive to the outliers and can effectively identify the noise in the data using a cardinality parameter. One of the pivotal applications of this algorithm is clustering data points in $\mathbb{R}n$ with missing entries, while utilising the domain knowledge of the respective data. In particular, the proposed algorithm is able to cluster $n$-dimensional data points that contain at least $(n-1)$-dimensional information. We illustrate the neighbourhoods for the standard probability distributions with continuous probability density functions and demonstrate the effectiveness of our algorithm on various synthetic and real-world datasets (e.g., rail and road networks). The experimental results also highlight its application in clustering incomplete data.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.