Papers
Topics
Authors
Recent
2000 character limit reached

Tracking objects that change in appearance with phase synchrony (2410.02094v3)

Published 2 Oct 2024 in cs.AI, cs.CV, and q-bio.NC

Abstract: Objects we encounter often change appearance as we interact with them. Changes in illumination (shadows), object pose, or the movement of non-rigid objects can drastically alter available image features. How do biological visual systems track objects as they change? One plausible mechanism involves attentional mechanisms for reasoning about the locations of objects independently of their appearances -- a capability that prominent neuroscience theories have associated with computing through neural synchrony. Here, we describe a novel deep learning circuit that can learn to precisely control attention to features separately from their location in the world through neural synchrony: the complex-valued recurrent neural network (CV-RNN). Next, we compare object tracking in humans, the CV-RNN, and other deep neural networks (DNNs), using FeatureTracker: a large-scale challenge that asks observers to track objects as their locations and appearances change in precisely controlled ways. While humans effortlessly solved FeatureTracker, state-of-the-art DNNs did not. In contrast, our CV-RNN behaved similarly to humans on the challenge, providing a computational proof-of-concept for the role of phase synchronization as a neural substrate for tracking appearance-morphing objects as they move about.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.