Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scale-Invariant Learning-to-Rank (2410.01959v2)

Published 2 Oct 2024 in cs.LG

Abstract: At Expedia, learning-to-rank (LTR) models plays a key role on our website in sorting and presenting information more relevant to users, such as search filters, property rooms, amenities, and images. A major challenge in deploying these models is ensuring consistent feature scaling between training and production data, as discrepancies can lead to unreliable rankings when deployed. Normalization techniques like feature standardization and batch normalization could address these issues but are impractical in production due to latency impacts and the difficulty of distributed real-time inference. To address consistent feature scaling issue, we introduce a scale-invariant LTR framework which combines a deep and a wide neural network to mathematically guarantee scale-invariance in the model at both training and prediction time. We evaluate our framework in simulated real-world scenarios with injected feature scale issues by perturbing the test set at prediction time, and show that even with inconsistent train-test scaling, using framework achieves better performance than without.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.