Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards deep learning sequence-structure co-generation for protein design (2410.01773v1)

Published 2 Oct 2024 in q-bio.BM

Abstract: Deep generative models that learn from the distribution of natural protein sequences and structures may enable the design of new proteins with valuable functions. While the majority of today's models focus on generating either sequences or structures, emerging co-generation methods promise more accurate and controllable protein design, ideally achieved by modeling both modalities simultaneously. Here we review recent advances in deep generative models for protein design, with a particular focus on sequence-structure co-generation methods. We describe the key methodological and evaluation principles underlying these methods, highlight recent advances from the literature, and discuss opportunities for continued development of sequence-structure co-generation approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 66 likes.

Upgrade to Pro to view all of the tweets about this paper: