Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration (2410.01723v6)

Published 2 Oct 2024 in cs.CV

Abstract: Diffusion Transformers (DiTs) excel in generative tasks but face practical deployment challenges due to high inference costs. Feature caching, which stores and retrieves redundant computations, offers the potential for acceleration. Existing learning-based caching, though adaptive, overlooks the impact of the prior timestep. It also suffers from misaligned objectives--aligned predicted noise vs. high-quality images--between training and inference. These two discrepancies compromise both performance and efficiency. To this end, we harmonize training and inference with a novel learning-based caching framework dubbed HarmoniCa. It first incorporates Step-Wise Denoising Training (SDT) to ensure the continuity of the denoising process, where prior steps can be leveraged. In addition, an Image Error Proxy-Guided Objective (IEPO) is applied to balance image quality against cache utilization through an efficient proxy to approximate the image error. Extensive experiments across $8$ models, $4$ samplers, and resolutions from $256\times256$ to $2K$ demonstrate superior performance and speedup of our framework. For instance, it achieves over $40\%$ latency reduction (i.e., $2.07\times$ theoretical speedup) and improved performance on PixArt-$\alpha$. Remarkably, our image-free approach reduces training time by $25\%$ compared with the previous method. Our code is available at https://github.com/ModelTC/HarmoniCa.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Reddit Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube