Papers
Topics
Authors
Recent
2000 character limit reached

Towards Model Discovery Using Domain Decomposition and PINNs (2410.01599v1)

Published 2 Oct 2024 in math.NA, cs.LG, and cs.NA

Abstract: We enhance machine learning algorithms for learning model parameters in complex systems represented by ordinary differential equations (ODEs) with domain decomposition methods. The study evaluates the performance of two approaches, namely (vanilla) Physics-Informed Neural Networks (PINNs) and Finite Basis Physics-Informed Neural Networks (FBPINNs), in learning the dynamics of test models with a quasi-stationary longtime behavior. We test the approaches for data sets in different dynamical regions and with varying noise level. As results, we find a better performance for the FBPINN approach compared to the vanilla PINN approach, even in cases with data from only a quasi-stationary time domain with few dynamics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.