Spoken Grammar Assessment Using LLM (2410.01579v1)
Abstract: Spoken language assessment (SLA) systems restrict themselves to evaluating the pronunciation and oral fluency of a speaker by analysing the read and spontaneous spoken utterances respectively. The assessment of language grammar or vocabulary is relegated to written language assessment (WLA) systems. Most WLA systems present a set of sentences from a curated finite-size database of sentences thereby making it possible to anticipate the test questions and train oneself. In this paper, we propose a novel end-to-end SLA system to assess language grammar from spoken utterances thus making WLA systems redundant; additionally, we make the assessment largely unteachable by employing a LLM to bring in variations in the test. We further demonstrate that a hybrid automatic speech recognition (ASR) with a custom-built LLM outperforms the state-of-the-art ASR engine for spoken grammar assessment.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.