Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Endless Jailbreaks with Bijection Learning (2410.01294v3)

Published 2 Oct 2024 in cs.CL

Abstract: Despite extensive safety measures, LLMs are vulnerable to adversarial inputs, or jailbreaks, which can elicit unsafe behaviors. In this work, we introduce bijection learning, a powerful attack algorithm which automatically fuzzes LLMs for safety vulnerabilities using randomly-generated encodings whose complexity can be tightly controlled. We leverage in-context learning to teach models bijective encodings, pass encoded queries to the model to bypass built-in safety mechanisms, and finally decode responses back into English. Our attack is extremely effective on a wide range of frontier LLMs. Moreover, by controlling complexity parameters such as number of key-value mappings in the encodings, we find a close relationship between the capability level of the attacked LLM and the average complexity of the most effective bijection attacks. Our work highlights that new vulnerabilities in frontier models can emerge with scale: more capable models are more severely jailbroken by bijection attacks.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.