Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Exploring Fine-grained Task Parallelism on Simultaneous Multithreading Cores (2410.01222v1)

Published 2 Oct 2024 in cs.DC

Abstract: Nowadays, latency-critical, high-performance applications are parallelized even on power-constrained client systems to improve performance. However, an important scenario of fine-grained tasking on simultaneous multithreading CPU cores in such systems has not been well researched in previous works. Hence, in this paper, we conduct performance analysis of state-of-the-art shared-memory parallel programming frameworks on simultaneous multithreading cores using real-world fine-grained application kernels. We introduce a specialized and simple software-only parallel programming framework called Relic to enable extremely fine-grained tasking on simultaneous multithreading cores. Using Relic framework, we increase performance speedups over serial implementations of benchmark kernels by 19.1% compared to LLVM OpenMP, by 31.0% compared to GNU OpenMP, by 20.2% compared to Intel OpenMP, by 33.2% compared to X-OpenMP, by 30.1% compared to oneTBB, by 23.0% compared to Taskflow, and by 21.4% compared to OpenCilk.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.