Parametrized Families of Resolvent Compositions (2410.01090v2)
Abstract: This paper presents an in-depth analysis of a parametrized version of the resolvent composition, an operation that combines a set-valued operator and a linear operator. We provide new properties and examples, and show that resolvent compositions can be interpreted as parallel compositions of perturbed operators. Additionally, we establish new monotonicity results, even in cases when the initial operator is not monotone. Finally, we derive asymptotic results regarding operator convergence, specifically focusing on graph-convergence and the $\rho$-Hausdorff distance.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.