Distributed Quantum Computing: Applications and Challenges
Abstract: Quantum computing is presently undergoing rapid development to achieve a significant speedup promised in certain applications. Nonetheless, scaling quantum computers remains a formidable engineering challenge, prompting exploration of alternative methods to achieve the promised quantum advantage. An example is given by the concept of distributed quantum computing, which aims to scale quantum computers through the linking of different individual quantum computers. Additionally, distributed quantum computing opens the way to new applications on the longer term. This study seeks to give an overview of this technology on an application-level, considering both use cases and implementation considerations. In this way, this work aims to push forward the field of distributed quantum computing, aiming for real-world distributed quantum systems in the near future.
- G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114–117, 4 1965.
- V. Hassija, V. Chamola, A. Goyal, S. S. Kanhere, and N. Guizani, “Forthcoming applications of quantum computing: peeking into the future,” IET Quantum Communication, vol. 1, no. 2, pp. 35–41, 2020.
- J. Gambetta, “IBM Quantum Computing: Roadmap,” 12 2023.
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018.
- IBM. (2022, 05) Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercomputing.
- Z. Davarzani, M. Zomorodi, and M. Houshmand, “A hierarchical approach for building distributed quantum systems,” Scientific Reports, vol. 12, no. 1, 9 2022. [Online]. Available: http://dx.doi.org/10.1038/s41598-022-18989-w
- N. LaRacuente, K. N. Smith, P. Imany, K. L. Silverman, and F. T. Chong, “Modeling short-range microwave networks to scale superconducting quantum computation,” 2023. [Online]. Available: https://arxiv.org/abs/2201.08825
- K. Mitarai and K. Fujii, “Overhead for simulating a non-local channel with local channels by quasiprobability sampling,” Quantum, vol. 5, p. 388, Jan. 2021. [Online]. Available: http://dx.doi.org/10.22331/q-2021-01-28-388
- ——, “Constructing a virtual two-qubit gate by sampling single-qubit operations,” New Journal of Physics, vol. 23, no. 2, p. 023021, feb 2021. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/abd7bc
- W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, “Cutqc: using small quantum computers for large quantum circuit evaluations,” in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’21. ACM, Apr. 2021. [Online]. Available: http://dx.doi.org/10.1145/3445814.3446758
- C. Piveteau and D. Sutter, “Circuit knitting with classical communication,” IEEE Transactions on Information Theory, pp. 1–1, 2023.
- M. Rennela, S. Brand, A. Laarman, and V. Dunjko, “Hybrid divide-and-conquer approach for tree search algorithms,” Quantum, vol. 7, p. 959, Mar. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-03-23-959
- C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical Computer Science, vol. 560, pp. 7–11, dec 2014.
- I. B. Djordjevic, “Chapter 15 - quantum key distribution,” in Quantum Information Processing, Quantum Computing, and Quantum Error Correction, 2nd ed., I. B. Djordjevic, Ed. Academic Press, 2021, pp. 703–784.
- A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, “Quantum internet: Networking challenges in distributed quantum computing,” IEEE Network, vol. 34, no. 1, pp. 137–143, 2020.
- H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, p. 1023–1030, Jun. 2008. [Online]. Available: http://dx.doi.org/10.1038/nature07127
- S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.aam9288
- S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin, and G. Rempe, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.abe3150
- X. Liu, X.-M. Hu, T.-X. Zhu, C. Zhang, Y.-X. Xiao, J.-L. Miao, Z.-W. Ou, B.-H. Liu, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, “Distributed quantum computing over 7.0 km,” 2023.
- M. Caleffi, M. Amoretti, D. Ferrari, D. Cuomo, J. Illiano, A. Manzalini, and A. S. Cacciapuoti, “Distributed Quantum Computing: a Survey,” 2022.
- D. Barral, F. J. Cardama, G. Díaz, D. Faílde, I. F. Llovo, M. M. Juane, J. Vázquez-Pérez, J. Villasuso, C. Piñeiro, N. Costas, J. C. Pichel, T. F. Pena, and A. Gómez, “Review of distributed quantum computing. from single qpu to high performance quantum computing,” 2024. [Online]. Available: https://arxiv.org/abs/2404.01265
- B. Benatallah, F. Casati, and F. Toumani, “Web service conversation modeling: a cornerstone for e-business automation,” IEEE Internet Computing, vol. 8, no. 1, pp. 46–54, 2004.
- R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure multi-party computation,” in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ser. STOC ’96. New York, NY, USA: Association for Computing Machinery, 1996, p. 639–648.
- N. M. P. Neumann and R. S. Wezeman, “Distributed quantum machine learning,” in Innovations for Community Services. Springer International Publishing, 2022, pp. 281–293.
- X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation with optimal circuit depth: Implementations and applications,” Phys. Rev. Lett., vol. 129, p. 230504, Nov 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.129.230504
- S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran, “Quantum embeddings for machine learning,” 2020.
- I. H. Sarker, “Machine learning: Algorithms, real-world applications and research directions,” SN Computer Science, vol. 2, no. 3, p. 160, 2021.
- OpenAI, “DALL-E2,” URL: https://openai.com/dall-e-2, 2022.
- ——, “ChatGPT,” URL: https://openai.com/chatgpt, 2022.
- D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee, and M. Zaharia, “Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC ’21. New York, NY, USA: Association for Computing Machinery, 2021.
- E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm,” 2014.
- R. de Wolf, “Quantum computing: Lecture notes,” 2023.
- M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, aug 2021.
- S. DiAdamo, M. Ghibaudi, and J. Cruise, “Distributed quantum computing and network control for accelerated VQE,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–21, 2021.
- I. Khait, E. Tham, D. Segal, and A. Brodutch, “Variational Quantum Eigensolvers in the Era of Distributed Quantum Computers,” 2023.
- Y. Du, Y. Qian, X. Wu, and D. Tao, “s,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–16, 2022.
- J. Li, M. Alam, and S. Ghosh, “Large-Scale Quantum Approximate Optimization via Divide-and-Conquer,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 6, pp. 1852–1860, 2023.
- Y.-F. Niu, S. Zhang, C. Ding, W.-S. Bao, and H.-L. Huang, “Parameter-parallel distributed variational quantum algorithm,” SciPost Physics, vol. 14, no. 5, May 2023.
- R. Jozsa, “An introduction to measurement based quantum computation,” 2005.
- L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ser. STOC ’96. New York, NY, USA: Association for Computing Machinery, 1996, p. 212–219.
- P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509, 1997.
- X. Zhou, D. Qiu, and L. Luo, “Distributed exact Grover’s algorithm,” Frontiers of Physics, vol. 18, no. 5, Aug. 2023.
- A. Yimsiriwattana and S. J. L. Jr., “Distributed quantum computing: a distributed Shor algorithm,” in Quantum Information and Computation II, E. Donkor, A. R. Pirich, and H. E. Brandt, Eds., vol. 5436, International Society for Optics and Photonics. SPIE, 2004, pp. 360 – 372.
- A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Validating quantum computers using randomized model circuits,” Phys. Rev. A, vol. 100, p. 032328, Sep 2019.
- A. R. Otero, N. M. P. Neumann, W. van der Schoot, and R. Wezeman, “Noise robustness of a multiparty quantum summation protocol,” 2023, accepted at ICCS 2024.
- P. Høyer and R. Špalek, “Quantum fan-out is powerful,” Theory of Computing, vol. 1, no. 5, pp. 81–103, 2005.
- J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio, “Optimal local implementation of nonlocal quantum gates,” Phys. Rev. A, vol. 62, p. 052317, Oct 2000.
- A. Yimsiriwattana and S. J. Lomonaco, “Generalized GHZ States and Distributed Quantum Computing,” 2004.
- Z. Wang, J. Li, K. Xue, S. Cheng, N. Yu, Q. Sun, and J. Lu, “An Asynchronous Entanglement Distribution Protocol for Quantum Networks,” IEEE Network, vol. 36, no. 5, pp. 40–47, 2022.
- G. Zhang and M. R. James, “Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems,” IEEE Transactions on Automatic Control, vol. 56, no. 7, pp. 1535–1550, jul 2011.
- Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Reviews of Modern Physics, vol. 85, no. 2, pp. 623–653, apr 2013.
- M. Hafezi, D. Chang, V. Gritsev, E. Demler, and M. Lukin, “Photonic quantum transport in a nonlinear optical fiber,” Europhysics Letters (epl), vol. 94, 07 2009.
- T. Herbst, T. Scheidl, M. Fink, J. Handsteiner, B. Wittmann, R. Ursin, and A. Zeilinger, “Teleportation of entanglement over 143 km,” Proceedings of the National Academy of Sciences, vol. 112, no. 46, pp. 14 202–14 205, nov 2015.
- K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, “Deterministic teleportation of a quantum gate between two logical qubits,” Nature, vol. 561, no. 7723, p. 368–373, Sep. 2018. [Online]. Available: http://dx.doi.org/10.1038/s41586-018-0470-y
- Y. Zhong, H.-S. Chang, A. Bienfait, É. Dumur, M.-H. Chou, C. R. Conner, J. Grebel, R. G. Povey, H. Yan, D. I. Schuster, and A. N. Cleland, “Deterministic multi-qubit entanglement in a quantum network,” Nature, vol. 590, no. 7847, pp. 571–575, feb 2021.
- C. Noel, P. Niroula, D. Zhu, A. Risinger, L. Egan, D. Biswas, M. Cetina, A. V. Gorshkov, M. J. Gullans, D. A. Huse, and C. Monroe, “Measurement-induced quantum phases realized in a trapped-ion quantum computer,” Nature Physics, vol. 18, no. 7, pp. 760–764, jun 2022.
- M. Saffman, “Quantum computing with atomic qubits and Rydberg interactions: progress and challenges,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 49, no. 20, p. 202001, oct 2016.
- M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting Qubits: Current State of Play,” Annual Review of Condensed Matter Physics, vol. 11, no. 1, pp. 369–395, 2020.
- T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov, S. Lloyd, and J. J. Mazo, “Superconducting persistent-current qubit,” Phys. Rev. B, vol. 60, pp. 15 398–15 413, Dec 1999.
- D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and Y. Nakamura, “Hybrid quantum systems based on magnonics,” Applied Physics Express, vol. 12, no. 7, p. 070101, jun 2019.
- C. Psaroudaki and C. Panagopoulos, “Skyrmion Qubits: A New Class of Quantum Logic Elements Based on Nanoscale Magnetization,” Physical Review Letters, vol. 127, no. 6, aug 2021.
- D. P. DiVincenzo, “The Physical Implementation of Quantum Computation,” Fortschritte der Physik, vol. 48, no. 9-11, pp. 771–783, sep 2000.
- D. Lago-Rivera, J. V. Rakonjac, S. Grandi, and H. de Riedmatten, “Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit,” Nature Communications, vol. 14, no. 1, apr 2023.
- D. Palani, F. Hasse, P. Kiefer, F. Boeckling, J.-P. Schroeder, U. Warring, and T. Schaetz, “High-fidelity transport of trapped-ion qubits in a multilayer array,” Physical Review A, vol. 107, no. 5, may 2023.
- W. van der Schoot, R. Wezeman, P. T. Eendebak, N. M. P. Neumann, and F. Phillipson, “Evaluating three levels of quantum metrics on quantum-inspire hardware,” Quantum Information Processing, vol. 22, no. 12, Dec. 2023. [Online]. Available: http://dx.doi.org/10.1007/s11128-023-04184-x
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.