Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The complexity of separability for semilinear sets and Parikh automata (2410.00548v4)

Published 1 Oct 2024 in cs.FL

Abstract: In a \emph{separability problem}, we are given two sets $K$ and $L$ from a class $\mathcal{C}$, and we want to decide whether there exists a set $S$ from a class $\mathcal{S}$ such that $K\subseteq S$ and $S\cap L=\emptyset$. In this case, we speak of \emph{separability of sets in $\mathcal{C}$ by sets in $\mathcal{S}$}. We study two types of separability problems. First, we consider separability of semilinear sets (i.e. subsets of $\mathbb{N}d$ for some $d$) by sets definable by quantifier-free monadic Presburger formulas (or equivalently, the recognizable subsets of $\mathbb{N}d$). Here, a formula is monadic if each atom uses at most one variable. Second, we consider separability of languages of Parikh automata by regular languages. A Parikh automaton is a machine with access to counters that can only be incremented, and have to meet a semilinear constraint at the end of the run. Both of these separability problems are known to be decidable with elementary complexity. Our main results are that both problems are coNP-complete. In the case of semilinear sets, coNP-completeness holds regardless of whether the input sets are specified by existential Presburger formulas, quantifier-free formulas, or semilinear representations. Our results imply that recognizable separability of rational subsets of $\Sigma*\times\mathbb{N}d$ (shown decidable by Choffrut and Grigorieff) is coNP-complete as well. Another application is that regularity of deterministic Parikh automata (where the target set is specified using a quantifier-free Presburger formula) is coNP-complete as well.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube