Drone Stereo Vision for Radiata Pine Branch Detection and Distance Measurement: Utilizing Deep Learning and YOLO Integration (2410.00503v2)
Abstract: This research focuses on the development of a drone equipped with pruning tools and a stereo vision camera to accurately detect and measure the spatial positions of tree branches. YOLO is employed for branch segmentation, while two depth estimation approaches, monocular and stereo, are investigated. In comparison to SGBM, deep learning techniques produce more refined and accurate depth maps. In the absence of ground-truth data, a fine-tuning process using deep neural networks is applied to approximate optimal depth values. This methodology facilitates precise branch detection and distance measurement, addressing critical challenges in the automation of pruning operations. The results demonstrate notable advancements in both accuracy and efficiency, underscoring the potential of deep learning to drive innovation and enhance automation in the agricultural sector.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.