Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

KANOP: A Data-Efficient Option Pricing Model using Kolmogorov-Arnold Networks (2410.00419v1)

Published 1 Oct 2024 in q-fin.CP, cs.CE, q-fin.MF, and q-fin.PR

Abstract: Inspired by the recently proposed Kolmogorov-Arnold Networks (KANs), we introduce the KAN-based Option Pricing (KANOP) model to value American-style options, building on the conventional Least Square Monte Carlo (LSMC) algorithm. KANs, which are based on Kolmogorov-Arnold representation theorem, offer a data-efficient alternative to traditional Multi-Layer Perceptrons, requiring fewer hidden layers to achieve a higher level of performance. By leveraging the flexibility of KANs, KANOP provides a learnable alternative to the conventional set of basis functions used in the LSMC model, allowing the model to adapt to the pricing task and effectively estimate the expected continuation value. Using examples of standard American and Asian-American options, we demonstrate that KANOP produces more reliable option value estimates, both for single-dimensional cases and in more complex scenarios involving multiple input variables. The delta estimated by the KANOP model is also more accurate than that obtained using conventional basis functions, which is crucial for effective option hedging. Graphical illustrations further validate KANOP's ability to accurately model the expected continuation value for American-style options.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.