Hammerstein equations for sparse random matrices (2410.00355v2)
Abstract: Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.