Papers
Topics
Authors
Recent
2000 character limit reached

Hammerstein equations for sparse random matrices (2410.00355v2)

Published 1 Oct 2024 in cond-mat.dis-nn, cs.NA, math-ph, math.FA, math.MP, math.NA, and math.PR

Abstract: Finding eigenvalue distributions for a number of sparse random matrix ensembles can be reduced to solving nonlinear integral equations of the Hammerstein type. While a systematic mathematical theory of such equations exists, it has not been previously applied to sparse matrix problems. We close this gap in the literature by showing how one can employ numerical solutions of Hammerstein equations to accurately recover the spectra of adjacency matrices and Laplacians of random graphs. While our treatment focuses on random graphs for concreteness, the methodology has broad applications to more general sparse random matrices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.