Papers
Topics
Authors
Recent
2000 character limit reached

Mamba for Streaming ASR Combined with Unimodal Aggregation (2410.00070v2)

Published 30 Sep 2024 in eess.AS, cs.CL, and cs.SD

Abstract: This paper works on streaming automatic speech recognition (ASR). Mamba, a recently proposed state space model, has demonstrated the ability to match or surpass Transformers in various tasks while benefiting from a linear complexity advantage. We explore the efficiency of Mamba encoder for streaming ASR and propose an associated lookahead mechanism for leveraging controllable future information. Additionally, a streaming-style unimodal aggregation (UMA) method is implemented, which automatically detects token activity and streamingly triggers token output, and meanwhile aggregates feature frames for better learning token representation. Based on UMA, an early termination (ET) method is proposed to further reduce recognition latency. Experiments conducted on two Mandarin Chinese datasets demonstrate that the proposed model achieves competitive ASR performance in terms of both recognition accuracy and latency.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.