Papers
Topics
Authors
Recent
2000 character limit reached

Generalizing Consistency Policy to Visual RL with Prioritized Proximal Experience Regularization (2410.00051v2)

Published 28 Sep 2024 in cs.LG, cs.AI, and cs.CV

Abstract: With high-dimensional state spaces, visual reinforcement learning (RL) faces significant challenges in exploitation and exploration, resulting in low sample efficiency and training stability. As a time-efficient diffusion model, although consistency models have been validated in online state-based RL, it is still an open question whether it can be extended to visual RL. In this paper, we investigate the impact of non-stationary distribution and the actor-critic framework on consistency policy in online RL, and find that consistency policy was unstable during the training, especially in visual RL with the high-dimensional state space. To this end, we suggest sample-based entropy regularization to stabilize the policy training, and propose a consistency policy with prioritized proximal experience regularization (CP3ER) to improve sample efficiency. CP3ER achieves new state-of-the-art (SOTA) performance in 21 tasks across DeepMind control suite and Meta-world. To our knowledge, CP3ER is the first method to apply diffusion/consistency models to visual RL and demonstrates the potential of consistency models in visual RL. More visualization results are available at https://jzndd.github.io/CP3ER-Page/.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: