Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
33 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
479 tokens/sec
Kimi K2 via Groq Premium
160 tokens/sec
2000 character limit reached

TaskComplexity: A Dataset for Task Complexity Classification with In-Context Learning, FLAN-T5 and GPT-4o Benchmarks (2409.20189v1)

Published 30 Sep 2024 in cs.CL

Abstract: This paper addresses the challenge of classifying and assigning programming tasks to experts, a process that typically requires significant effort, time, and cost. To tackle this issue, a novel dataset containing a total of 4,112 programming tasks was created by extracting tasks from various websites. Web scraping techniques were employed to collect this dataset of programming problems systematically. Specific HTML tags were tracked to extract key elements of each issue, including the title, problem description, input-output, examples, problem class, and complexity score. Examples from the dataset are provided in the appendix to illustrate the variety and complexity of tasks included. The dataset's effectiveness has been evaluated and benchmarked using two approaches; the first approach involved fine-tuning the FLAN-T5 small model on the dataset, while the second approach used in-context learning (ICL) with the GPT-4o mini. The performance was assessed using standard metrics: accuracy, recall, precision, and F1-score. The results indicated that in-context learning with GPT-4o-mini outperformed the FLAN-T5 model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.