Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Local Randomized Neural Networks with Discontinuous Galerkin Methods for KdV-type and Burgers Equations (2409.19855v1)

Published 30 Sep 2024 in math.NA and cs.NA

Abstract: The Local Randomized Neural Networks with Discontinuous Galerkin (LRNN-DG) methods, introduced in [42], were originally designed for solving linear partial differential equations. In this paper, we extend the LRNN-DG methods to solve nonlinear PDEs, specifically the Korteweg-de Vries (KdV) equation and the Burgers equation, utilizing a space-time approach. Additionally, we introduce adaptive domain decomposition and a characteristic direction approach to enhance the efficiency of the proposed methods. Numerical experiments demonstrate that the proposed methods achieve high accuracy with fewer degrees of freedom, additionally, adaptive domain decomposition and a characteristic direction approach significantly improve computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.