Papers
Topics
Authors
Recent
2000 character limit reached

Unifying back-propagation and forward-forward algorithms through model predictive control (2409.19561v1)

Published 29 Sep 2024 in cs.LG and math.OC

Abstract: We introduce a Model Predictive Control (MPC) framework for training deep neural networks, systematically unifying the Back-Propagation (BP) and Forward-Forward (FF) algorithms. At the same time, it gives rise to a range of intermediate training algorithms with varying look-forward horizons, leading to a performance-efficiency trade-off. We perform a precise analysis of this trade-off on a deep linear network, where the qualitative conclusions carry over to general networks. Based on our analysis, we propose a principled method to choose the optimization horizon based on given objectives and model specifications. Numerical results on various models and tasks demonstrate the versatility of our method.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.