Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scalable Cloud-Native Pipeline for Efficient 3D Model Reconstruction from Monocular Smartphone Images (2409.19322v1)

Published 28 Sep 2024 in cs.CV and cs.AI

Abstract: In recent years, 3D models have gained popularity in various fields, including entertainment, manufacturing, and simulation. However, manually creating these models can be a time-consuming and resource-intensive process, making it impractical for large-scale industrial applications. To address this issue, researchers are exploiting Artificial Intelligence and Machine Learning algorithms to automatically generate 3D models effortlessly. In this paper, we present a novel cloud-native pipeline that can automatically reconstruct 3D models from monocular 2D images captured using a smartphone camera. Our goal is to provide an efficient and easily-adoptable solution that meets the Industry 4.0 standards for creating a Digital Twin model, which could enhance personnel expertise through accelerated training. We leverage machine learning models developed by NVIDIA Research Labs alongside a custom-designed pose recorder with a unique pose compensation component based on the ARCore framework by Google. Our solution produces a reusable 3D model, with embedded materials and textures, exportable and customizable in any external 3D modelling software or 3D engine. Furthermore, the whole workflow is implemented by adopting the microservices architecture standard, enabling each component of the pipeline to operate as a standalone replaceable module.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.