Confidential Prompting: Protecting User Prompts from Cloud LLM Providers (2409.19134v3)
Abstract: Our work tackles the challenge of securing user inputs in cloud-hosted LLM serving while ensuring model confidentiality, output invariance, and compute efficiency. We introduce Secure Partitioned Decoding (SPD), which uses confidential computing to confine user prompts to a trusted execution environment (TEE), namely a confidential virtual machine (CVM), while allowing service providers to generate tokens efficiently. We also introduce a novel cryptographic method, Prompt Obfuscation (PO), to ensure robustness against reconstruction attacks on SPD. We demonstrate our approach preserves both prompt confidentiality and LLM serving efficiency. Our solution enables privacy-preserving cloud LLM serving that handles sensitive prompts, such as clinical records, financial data, and personal information.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.