Papers
Topics
Authors
Recent
Search
2000 character limit reached

Parallel Quantum Signal Processing Via Polynomial Factorization

Published 27 Sep 2024 in quant-ph | (2409.19043v1)

Abstract: Quantum signal processing (QSP) is a methodology for constructing polynomial transformations of a linear operator encoded in a unitary. Applied to an encoding of a state $\rho$, QSP enables the evaluation of nonlinear functions of the form $\text{tr}(P(\rho))$ for a polynomial $P(x)$, which encompasses relevant properties like entropies and fidelity. However, QSP is a sequential algorithm: implementing a degree-$d$ polynomial necessitates $d$ queries to the encoding, equating to a query depth $d$. Here, we reduce the depth of these property estimation algorithms by developing Parallel Quantum Signal Processing. Our algorithm parallelizes the computation of $\text{tr} (P(\rho))$ over $k$ systems and reduces the query depth to $d/k$, thus enabling a family of time-space tradeoffs for QSP. This furnishes a property estimation algorithm suitable for distributed quantum computers, and is realized at the expense of increasing the number of measurements by a factor $O( \text{poly}(d) 2{O(k)} )$. We achieve this result by factorizing $P(x)$ into a product of $k$ smaller polynomials of degree $O(d/k)$, which are each implemented in parallel with QSP, and subsequently multiplied together with a swap test to reconstruct $P(x)$. We characterize the achievable class of polynomials by appealing to the fundamental theorem of algebra, and demonstrate application to canonical problems including entropy estimation and partition function evaluation.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 64 likes about this paper.