Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Seeing the Invisible through Speckle Images (2409.18815v1)

Published 27 Sep 2024 in physics.optics

Abstract: Scattering obscures information carried by wave by producing a speckle pattern, posing a common challenge across various fields, including microscopy and astronomy. Traditional methods for extracting information from speckles often rely on significant physical assumptions, complex devices, or intricate algorithms. Recently, machine learning has emerged as a scalable and widely adopted tool for interpreting speckle patterns. However, most current machine learning techniques depend heavily on supervised training with extensive labeled datasets, which is problematic when labels are unavailable. To address this, we propose a strategy based on unsupervised learning for speckle recognition and evaluation, enabling to capture high-level information, such as object classes, directly from speckles without labeled data. By deriving invariant features from speckles, this method allows for the classification of speckles and facilitates diverse applications in image sensing. We experimentally validated our strategy through two significant applications: a noninvasive glucose monitoring system capable of differentiating time-lapse glucose concentrations, and a high-throughput communication system utilizing multimode fibers in dynamic environments. The versatility of this method holds promise for a broad range of far-reaching applications, including biomedical diagnostics, quantum network decoupling, and remote sensing.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube