Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Balanced Splitting: A Framework for Achieving Zero-wait in the Multiserver-job Model (2409.18557v1)

Published 27 Sep 2024 in cs.PF

Abstract: We present a new framework for designing nonpreemptive and job-size oblivious scheduling policies in the multiserver-job queueing model. The main requirement is to identify a static and balanced sub-partition of the server set and ensure that the servers in each set of that sub-partition can only handle jobs of a given class and in a first-come first-served order. A job class is determined by the number of servers to which it has exclusive access during its entire execution and the probability distribution of its service time. This approach aims to reduce delays by preventing small jobs from being blocked by larger ones that arrived first, and it is particularly beneficial when the job size variability intra resp. inter classes is small resp. large. In this setting, we propose a new scheduling policy, Balanced-Splitting. We provide a sufficient condition for the stability of Balanced-Splitting and show that the resulting queueing probability, i.e., the probability that an arriving job needs to wait for processing upon arrival, vanishes in both the subcritical (the load is kept fixed to a constant less than one) and critical (the load approaches one from below) many-server limiting regimes. Crucial to our analysis is a connection with the M/GI/s/s queue and Erlang's loss formula, which allows our analysis to rely on fundamental results from queueing theory. Numerical simulations show that the proposed policy performs better than several preemptive/nonpreemptive size-aware/oblivious policies in various practical scenarios. This is also confirmed by simulations running on real traces from High Performance Computing (HPC) workloads. The delays induced by Balanced-Splitting are also competitive with those induced by state-of-the-art policies such as First-Fit-SRPT and ServerFilling-SRPT, though our approach has the advantage of not requiring preemption, nor the knowledge of job sizes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.