Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PNOD: An Efficient Projected Newton Framework for Exact Optimal Experimental Designs (2409.18392v1)

Published 27 Sep 2024 in stat.ME and math.OC

Abstract: Computing the exact optimal experimental design has been a longstanding challenge in various scientific fields. This problem, when formulated using a specific information function, becomes a mixed-integer nonlinear programming (MINLP) problem, which is typically NP-hard, thus making the computation of a globally optimal solution extremely difficult. The branch and bound (BnB) method is a widely used approach for solving such MINLPs, but its practical efficiency heavily relies on the ability to solve continuous relaxations effectively within the BnB search tree. In this paper, we propose a novel projected Newton framework, combining with a vertex exchange method for efficiently solving the associated subproblems, designed to enhance the BnB method. This framework offers strong convergence guarantees by utilizing recent advances in solving self-concordant optimization and convex quadratic programming problems. Extensive numerical experiments on A-optimal and D-optimal design problems, two of the most commonly used models, demonstrate the framework's promising numerical performance. Specifically, our framework significantly improves the efficiency of node evaluation within the BnB search tree and enhances the accuracy of solutions compared to state-of-the-art methods. The proposed framework is implemented in an open source Julia package called \texttt{PNOD.jl}, which opens up possibilities for its application in a wide range of real-world scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.