Renewal Processes Represented as Doubly Stochastic Poisson Processes (2409.18362v1)
Abstract: This paper gives an elementary proof for the following theorem: a renewal process can be represented by a doubly-stochastic Poisson process (DSPP) if and only if the Laplace-Stieltjes transform of the inter-arrival times is of the following form: $$\phi(\theta)=\lambda\left[\lambda+\theta+k\int_0\infty\left(1-e{-\theta z}\right)\,dG(z)\right]{-1},$$ for some positive real numbers $\lambda, k$, and some distribution function $G$ with $G(\infty)=1$. The intensity process $\Lambda(t)$ of the corresponding DSPP jumps between $\lambda$ and $0$, with the time spent at $\lambda$ being independent random variables that are exponentially distributed with mean $1/k$, and the time spent at $0$ being independent random variables with distribution function $G$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.