Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

AQMLator -- An Auto Quantum Machine Learning E-Platform (2409.18338v3)

Published 26 Sep 2024 in quant-ph and cs.LG

Abstract: A successful Machine Learning (ML) model implementation requires three main components: training dataset, suitable model architecture and training procedure. Given dataset and task, finding an appropriate model might be challenging. AutoML, a branch of ML, focuses on automatic architecture search -- a meta method that aims at moving human from ML system design process. The success of ML and the development of quantum computing (QC) in recent years led to a birth of new fascinating field called Quantum Machine Learning (QML) that, amongst others, incorporates quantum computers into ML models. In this paper we present AQMLator, an Auto Quantum Machine Learning platform that aims to automatically propose and train the quantum layers of an ML model with minimal input from the user. This way, data scientists can bypass the entry barrier for QC and use QML. AQMLator uses standard ML libraries, making it easy to introduce into existing ML pipelines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.