Accelerated gradient descent for high frequency Model Predictive Control (2409.18327v1)
Abstract: The recent promises of Model Predictive Control in robotics have motivated the development of tailored second-order methods to solve optimal control problems efficiently. While those methods benefit from strong convergence properties, tailored efficient implementations are challenging to derive. In this work, we study the potential effectiveness of first-order methods and show on a torque controlled manipulator that they can equal the performances of second-order methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.