Papers
Topics
Authors
Recent
2000 character limit reached

Powers of large matrices on GPU platforms to compute the Roman domination number of cylindrical graphs (2409.17658v1)

Published 26 Sep 2024 in math.CO and cs.DM

Abstract: The Roman domination in a graph $G$ is a variant of the classical domination, defined by means of a so-called Roman domination function $f\colon V(G)\to {0,1,2}$ such that if $f(v)=0$ then, the vertex $v$ is adjacent to at least one vertex $w$ with $f(w)=2$. The weight $f(G)$ of a Roman dominating function of $G$ is the sum of the weights of all vertices of $G$, that is, $f(G)=\sum_{u\in V(G)}f(u)$. The Roman domination number $\gamma_R(G)$ is the minimum weight of a Roman dominating function of $G$. In this paper we propose algorithms to compute this parameter involving the $(\min,+)$ powers of large matrices with high computational requirements and the GPU (Graphics Processing Unit) allows us to accelerate such operations. Specific routines have been developed to efficiently compute the $(\min ,+)$ product on GPU architecture, taking advantage of its computational power. These algorithms allow us to compute the Roman domination number of cylindrical graphs $P_m\Box C_n$ i.e., the Cartesian product of a path and a cycle, in cases $m=7,8,9$, $ n\geq 3$ and $m\geq $10$, n\equiv 0\pmod 5$. Moreover, we provide a lower bound for the remaining cases $m\geq 10, n\not\equiv 0\pmod 5$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.